Sensitivity Analysis in Multi - Objective Evolutionary Design

نویسندگان

  • Johan Andersson
  • Kay Chen
  • Meng Hiot Lim
  • Xin Yao
چکیده

In real world engineering design problems we have to search for solutions that simultaneously optimize a wide range of different criteria. Furthermore, the optimal solutions also have to be robust. Therefore, this chapter describes a method where a multi-objective genetic algorithm is combined with response surface methods in order to assess the robustness of a set of identified optimal solutions. The multi-objective genetic algorithm is used in order to optimize two different concepts of hydraulic actuation systems. The different concepts have been modeled in a simulation environment to which the optimization strategy has been coupled. The outcome from the optimization is a set of Pareto optimal solutions that elucidate the tradeoff between the energy consumption and the control error for each actuation system. Based on these Pareto fronts, promising regions could be identified for each concept. In these regions sensitivity analyses are performed with the help of response surface methods. It can then be determined how different design parameters affect the system for different optimal solutions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-objective Economic-statistical Design of Cumulative Count of Conforming Control Chart

Cumulative Count of Conforming (CCC) charts are utilized for monitoring the quality characteristics in high-quality processes. Executive cost of control charts is a motivation for researchers to design them with the lowest cost. Usually in most researches, only one objective named cost function is minimized subject to statistical constraints, which is not effective method for economic-statistic...

متن کامل

Multi-objective Optimization of web profile of railway wheel using Bi-directional Evolutionary Structural Optimization

In this paper, multi-objective optimization of railway wheel web profile using bidirectional evolutionary structural optimization (BESO) algorithm is investigated. Using a finite element software, static analysis of the wheel based on a standard load case, and its modal analysis for finding the fundamental natural frequency is performed. The von Mises stress and critical frequency as the proble...

متن کامل

A NOVEL FUZZY MULTI-OBJECTIVE ENHANCED TIME EVOLUTIONARY OPTIMIZATION FOR SPACE STRUCTURES

This research presents a novel design approach to achieve an optimal structure established upon multiple objective functions by simultaneous utilization of the Enhanced Time Evolutionary Optimization method and Fuzzy Logic (FLETEO). For this purpose, at first, modeling of the structure design problem in this space is performed using fuzzy logic concepts. Thus, a new problem creates with functio...

متن کامل

Power System Stability Improvement via TCSC Controller Employing a Multi-objective Strength Pareto Evolutionary Algorithm Approach

This paper focuses on multi-objective designing of multi-machine Thyristor Controlled Series Compensator (TCSC) using Strength Pareto Evolutionary Algorithm (SPEA). The TCSC parameters designing problem is converted to an optimization problem with the multi-objective function including the desired damping factor and the desired damping ratio of the power system modes, which is solved by a SPEA ...

متن کامل

Multi-objective Efficient Design of np Control Chart Using Data Envelopment Analysis

Control charts are the most important tools of statistical process control used to discriminate between assignable and common causes of variation and to improve the quality of a process. To design a control chart, three parameters including sample size, sampling interval, and control limits should be determined. The objectives are hourly expected cost, in-control average run length, power of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004